

Lecture 8: Fiber homotopy and homotopy fiber

Path space

Definition

Given a space $X \in \underline{\mathscr{T}}$, and $x \in X$, we define

free path space : PX = Map(I, X)

based path space : $P_X X = Map((I, 0), (X, x))$.

We denote the two maps

where $p_0(\gamma)=\gamma(0)$ is the start point and $p_1(\gamma)=\gamma(1)$ is the end point of the path γ . It induces

$$p = (p_0, p_1) : PX \rightarrow X \times X.$$

Theorem

Let $X \in \underline{\mathscr{T}}$. Then

- 1. $p: PX \rightarrow X \times X$ is a fibration.
- 2. The map $p_0: PX \to X$ is a fibration whose fiber at x_0 is $P_{x_0}X$.
- 3. The map $p_1: P_{x_0}X \to X$ is a fibration whose fiber at x_0 is $\Omega_{x_0}X$.
- 4. $p_0: PX \to X$ is homotopy equivalence. $P_{x_0}X$ is contractible.

(1) We need to prove the HLP of the diagram

By the Exponential Law, this is equivalent to the extension problem

This follows by observing that $\{0\} \times I \cup I \times \partial I$ is a deformation retract of $I \times I$.

(2) follows from the composition of two fibrations

(3) follows from the pull-back diagram and the fact that fibrations are preserved under pull-back

(4) follows from the retracting path trick.

Definition

Let $f: X \to Y$. We define the mapping path space P_f by the pull-back diagram

An element of P_f is a pair (x, γ) where

$$\gamma: I \to Y, \quad \gamma(1) = f(x).$$

Let

$$\iota: X \hookrightarrow P_f, \quad x \mapsto (x, 1_{f(x)})$$

and $p: P_f \to Y$ be the start point of the path. We have

Theorem

 $\iota: X \to P_f$ is strong deformation retract (hence homotopy equivalence) and $p: P_f \to Y$ is a fibration. In particular, any f is a composition of a homotopy equivalence with a fibration.

This theorem says every map is equivalent to a fibration in $\underline{h}\mathscr{J}$.

The first statement follows from the retracting path trick. We prove p is a fibration. Consider the pull-back diagram

$$P_f \longrightarrow PY$$

$$\downarrow$$

$$\downarrow$$

$$Y \times X \xrightarrow{\mathsf{id} \times f} Y \times Y.$$

This implies $P_f \to Y \times X$ is a fibration. Since $Y \times X \to Y$ is also a fibration, so is the composition

$$p: P_f \to Y \times X \to Y$$
.

Fiber homotopy

Definition

Let $p_1: E_1 \to B$ and $p_2: E_2 \to B$ be two fibrations. A fiber map from p_1 to p_2 is a map $f: E_1 \to E_2$ such that $p_1 = p_2 \circ f$.

Definition

Two fiber maps $f_0, f_1: p_1 \rightarrow p_2$ are said to be fiber homotopic

$$f_0 \simeq_B f_1$$

if there exists a homotopy $F: E_1 \times I \to E_2$ from f_0 to f_1 such that F(-,t) is a fiber map for each $t \in I$.

Definition

 $f\colon p_1\to p_2$ is a fiber homotopic equivalence if there exists $g\colon p_2\to p_1$ such that both $f\circ g$ and $g\circ f$ are fiber homotopic to identity maps.

Proposition

Let $p_1: E_1 \to B$ and $p_2: E_2 \to B$ be two fibrations and $f: E_1 \to E_2$ be a fiber map. Assume $f: E_1 \to E_2$ is a homotopy equivalence, then f is a fiber homotopy equivalence. In particular, $f: p_1^{-1}(b) \to p_2^{-1}(b)$ is a homotopy equivalence for any $b \in B$.

We only need to prove that for any fiber map $f\colon E_1\to E_2$ which is a homotopy equivalence, there is a fiber map $g\colon E_2\to E_1$ such that $g\circ f\simeq_B 1$. In fact, such a g is also a homotopy equivalence and we can find $h\colon E_1\to E_2$ such that $h\circ g\simeq_B 1$. Then

$$f \simeq_B h \circ g \circ f \simeq_B h$$

which implies $f \circ g \simeq_B 1$ as well.

Let $g: E_2 \to E_1$ represent the inverse of the homotopy class [f] in $\underline{\mathbf{h}}\underline{\mathscr{T}}$. We first show that we can choose g to be a fiber map, i.e., $p_1 \circ g = p_2$ in the following diagram

Otherwise, we observe that $p_1 \circ g = p_2 \circ f \circ g \simeq p_2$. We can use the fibration p_1 to lift the homotopy $p_1 \circ g \simeq p_2$ to a homotopy $g \simeq g'$. Then g' is a fiber map, and we can replace g by g'.

Now we assume $g:E_2\to E_1$ is a fiber map. The problem can be further reduced to the following

Claim

Let $p: E \to B$ be a fibration and $f: E \to E$ is a fiber map that is homotopic to 1_E , then there is a fiber map $h: E \to E$ such that $h \circ f \simeq_B 1$.

In fact, let $f\colon E_1\to E_2$ as in the proposition, $g\colon E_2\to E_1$ be a fiber map such that $g\circ f\simeq 1$ as chosen above. The "Claim" implies that we can find a fiber map $h\colon E_1\to E_1$ such that $h\circ g\circ f\simeq_B 1$. Then the fiber map $\tilde g=h\circ g$ has the required property that $\tilde g\circ f\simeq_B 1$.

Now we prove the "Claim". Let F be a homotopy from f to 1_E and $G = p \circ F$. Since p is fibration, we can construct a homotopy H that starts from 1_E and lifts G. Here is the picture

Combining these two homotopies we find a homotopy \tilde{F} from $h \circ \tilde{F}$ to 1_E that lifts the following homotopy

$$\tilde{G}: E \times I \to B, \quad \tilde{G}(-,t) = \begin{cases} G(-.2t) & 0 \le t \le 1/2 \\ G(-,2-2t) & 1/2 \le t \le 1 \end{cases}$$

Here is the picture

We can construct a map $K: E \times I \times I \to B$ that gives a homotopy between $\tilde{G}: E \times I \to B$ and the projection $E \times I \to E \xrightarrow{p} B$ (by pushing the two copies of G in G)

$$K(-, u, 0) = \tilde{G}(-, u),$$

 $K(-, u, 1) = p(-),$
 $K(-, 0, t) = p(-),$
 $K(-, 1, t) = p(-), \forall u, t \in I.$

Since p is a fibration, we can find a lift $\tilde{K}: E \times I \times I \to E$ of K s. t

$$\tilde{K}(-, u, 0) = \tilde{F}(-, u).$$

Then we have the following fiber homotopy

$$h \circ f = \tilde{K}(-,0,0) \simeq_B \tilde{K}(-,0,1) \simeq_B \tilde{K}(-,1,1) \simeq_B \tilde{K}(-,1,0) = 1_E.$$

Homotopy fiber

Definition

Let $f: X \to Y$, we define its homotopy fiber over $y \in Y$ to be the fiber of $P_f \to Y$ over y.

Proposition

If Y is path connected, then all homotopy fibers of $f\colon X\to Y$ are homotopic equivalent.

Proof.

Let $y_1, y_2 \in Y$, and F_1, F_2 be the homotopy fiber over y_1, y_2 . Then

$$F_i = \{(x, \gamma) | \gamma : I \to Y, \gamma(0) = y_i, \gamma(1) = f(x)\}.$$

Then composition with a path in Y from y_1 to y_2 gives a homotopy equivalence between F_1, F_2 .

If Y is path connected, we will usually write

where F denotes the homotopy fiber.

Proposition

If $f: X \to Y$ is a fibration, then its homotopy fiber at y is homotopy equivalent to $f^{-1}(y)$.

Proof.

We have the commutative diagram

where ι is a homotopy equivalence. Then ι is fiber homotopy equivalence.

Corollary

Let $f: X \to Y$ be a fibration and Y path connected. Then all fibers of f are homotopy equivalent.

Proof.

Given $y_1, y_2 \in Y$, their fibers $f^{-1}(y_1), f^{-1}(y_2)$ are homotopy equivalent to the corresponding homotopy fibers. The corollary follows since all homotopy fibers are homotopy equilvalent.

Recall the following useful criterion for fibration.

Theorem

Let $p: E \to B$ with B paracompact Hausdorff. Assume there exists an open cover $\{U_\alpha\}$ of B such that $p^{-1}(U_\alpha) \to U_\alpha$ is a fibration. Then p is a fibration.

Corollary

Let $p: E \to B$ be a fiber bundle with B paracompact Hausdorff. Then p is a fibration.

CW complexes and metric spaces are paracompact.